English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONS
  This item is discarded!Release HistoryDetailsSummary

Discarded

Journal Article

The variability of MR axon radii estimates in the human white matter

MPS-Authors
/persons/resource/persons189347

Edwards,  Luke
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons147461

Weiskopf,  Nikolaus
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Veraart, J., Raven, E. P., Edwards, L., Weiskopf, N., & Jones, D. K. (2021). The variability of MR axon radii estimates in the human white matter. Human Brain Mapping. doi:10.1002/hbm.25359.


Abstract
The noninvasive quantification of axonal morphology is an exciting avenue for gaining understanding of the function and structure of the central nervous system. Accurate non-invasive mapping of micron-sized axon radii using commonly-applied neuroimaging techniques, i.e., diffusion-weighted MRI, has been bolstered by recent hardware developments, specifically MR gradient design. Here the whole brain characterization of the effective MR axon radius is presented and the inter- and intra-scanner test-retest repeatability and reproducibility evaluated to promote the further development of the effective MR axon radius as a neuroimaging biomarker. A coefficient-of-variability of approximately 10% in the voxelwise estimation of the effective MR radius is observed in the test-retest analysis, but it is shown that the performance can be improved fourfold using a customized along-tract analysis.