English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Power-law population heterogeneity governs epidemic waves

MPS-Authors
/persons/resource/persons256371

Neipel,  Jonas
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons256373

Bauermann,  Jonathan
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons242618

Bo,  Stefano
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons224062

Harmon,  Tyler S.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons145744

Jülicher,  Frank
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)

2008.00471.pdf
(Preprint), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Neipel, J., Bauermann, J., Bo, S., Harmon, T. S., & Jülicher, F. (2020). Power-law population heterogeneity governs epidemic waves. PLoS One, 15(10): e0239678. doi:10.1371/journal.pone.0239678.


Cite as: http://hdl.handle.net/21.11116/0000-0007-DD7A-8
Abstract
We generalize the Susceptible-Infected-Removed (SIR) model for epidemics to take into account generic effects of heterogeneity in the degree of susceptibility to infection in the population. We introduce a single new parameter corresponding to a power-law exponent of the susceptibility distribution at small susceptibilities. We find that for this class of distributions the gamma distribution is the attractor of the dynamics. This allows us to identify generic effects of population heterogeneity in a model as simple as the original SIR model which is contained as a limiting case. Because of this simplicity, numerical solutions can be generated easily and key properties of the epidemic wave can still be obtained exactly. In particular, we present exact expressions for the herd immunity level, the final size of the epidemic, as well as for the shape of the wave and for observables that can be quantified during an epidemic. In strongly heterogeneous populations, the herd immunity level can be much lower than in models with homogeneous populations as commonly used for example to discuss effects of mitigation. Using our model to analyze data for the SARS-CoV-2 epidemic in Germany shows that the reported time course is consistent with several scenarios characterized by different levels of immunity. These scenarios differ in population heterogeneity and in the time course of the infection rate, for example due to mitigation efforts or seasonality. Our analysis reveals that quantifying the effects of mitigation requires knowledge on the degree of heterogeneity in the population. Our work shows that key effects of population heterogeneity can be captured without increasing the complexity of the model. We show that information about population heterogeneity will be key to understand how far an epidemic has progressed and what can be expected for its future course.