English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Proton ATPase in rat renal cortical endocytotic vesicles

MPS-Authors
/persons/resource/persons256395

Sabolic,  Ivan
Department of Physiology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons251310

Burckhardt,  Gerhard
Department of Physiology, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sabolic, I., & Burckhardt, G. (1988). Proton ATPase in rat renal cortical endocytotic vesicles. Biochimica et Biophysica Acta-Biomembranes, 937(2), 398-410. doi:10.1016/0005-2736(88)90262-3.


Cite as: https://hdl.handle.net/21.11116/0000-0007-DE19-4
Abstract
To relate ATPase activity to the ATP-driven H+-pump in rat renal endocytotic vesicles we applied an in vitro coupled optical test and a Pi-liberation assay. Endocytotic vesicles contain an ouabain-, vanadate- and oligomycin-insensitive ATPase. The ionophores for K+ and H+, valinomycin and carbonylcyanide p-chloro-methoxyphenylhydrazone (CCCP), respectively, stimulated ATPase activity, indicating its relation to the electrogenic H+-pump. This conclusion is supported by a similar distribution on a Percoll gradient of ATP-driven H+ uptake into endosomes and ionophore-stimulated ATPase activity. Coupled optical and Pi-liberation assays were then used to characterize the H+-ATPase with respect to the requirement for pH, nucleotides, anions, and mono- and divalent cations. The H+-ATPase activity was decreased by widely used blockers: N-ethylmaleimide (NEM), dicyclohexylcarbodiimide (DCCD) and diethylstilbestrol (DES). Different sensitivities to these blockers proved that alkaline phosphatase and H+-ATPase are separate entities. To investigate whether the NEM-, DCCD- and DES-sensitive ATPase activity is confined to intact endocytotic vesicles, cellular membranes from rat kidney cortex were separated on a Percoll density gradient. Surprisingly, endocytotic vesicles contain only a small fraction of the total NEM-, DCCD- and DES-sensitive ATPase activity. The majority of the blocker-sensitive ATPases belongs to membranes of as yet undefined cellular origin.