English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Influence of microbial symbionts on insect pheromones

MPS-Authors
There are no MPG-Authors available
External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Engl, T., & Kaltenpoth, M. (2018). Influence of microbial symbionts on insect pheromones. Natural Product Reports, 35(5), 386-397. doi:10.1039/c7np00068e.


Cite as: http://hdl.handle.net/21.11116/0000-0007-E2AD-7
Abstract
Pheromones serve as chemical signals between individuals of the same species and play important roles for mate localization and mate choice as well as other social interactions in insects. A growing body of literature indicates that microbial symbionts can modulate their hosts' chemical profiles, mate choice decisions and social behavior. This modulation can occur by the direct biosynthesis of pheromone components or the provisioning of precursors, or through general changes in the metabolite pool of the host and its resource allocation into pheromone production. Here we review and discuss the contexts in which microbial modulation of intraspecific communication in insects occurs and emphasize cases in which microbes are known to affect the involved chemistry. The described examples for a symbiotic influence on mate attraction and mate choice, aggregation, nestmate and kin recognition highlight the contextdependent costs and benefits of these symbiotic interactions and the potential for conflict and manipulation among the interacting partners. However, despite the increasing number of studies reporting on symbiont-mediated effects on insect chemical communication, experimentally validated connections between the presence of specific symbionts, changes in the host's chemistry, and behavioral effects thereof, remain limited to very few systems, highlighting the need for increased collaborative efforts between symbiosis researchers and chemical ecologists to gain more comprehensive insights into the influence of microbial symbionts on insect pheromones.