English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

Separated and overlapping neural coding of face and body identity

MPS-Authors
/persons/resource/persons192755

Foster,  C
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84435

Zhao,  M
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons217595

Bolkart,  T.
Dept. Perceiving Systems, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons214616

Black,  MJ
Dept. Perceiving Systems, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons83797

Bartels,  A
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83840

Bülthoff,  I
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Foster, C., Zhao, M., Bolkart, T., Black, M., Bartels, A., & Bülthoff, I. (submitted). Separated and overlapping neural coding of face and body identity.


Cite as: http://hdl.handle.net/21.11116/0000-0007-E5BF-0
Abstract
Recognising a person’s identity often relies on face and body information, and is tolerant to changes in low-level visual input (e.g. viewpoint changes). Previous studies have suggested that face identity is disentangled from low-level visual input in the anterior face-responsive regions. It remains unclear which regions disentangle body identity from variations in viewpoint, and whether face and body identity are encoded separately or combined into a coherent person identity representation. We trained participants to recognize three identities, and then recorded their brain activity using fMRI while they viewed face and body images of the three identities from different viewpoints. Participants’ task was to respond to either the stimulus identity or viewpoint. We found consistent decoding of body identity across viewpoint in the fusiform body area, right anterior temporal cortex, middle frontal gyrus and right insula. This finding demonstrates a similar function of fusiform and anterior temporal cortex for bodies as has previously been shown for faces, suggesting these regions may play a general role in extracting high-level identity information. Moreover, we could decode identity across neural activity evoked by faces and bodies in the early visual cortex, right inferior occipital cortex, right parahippocampal cortex and right superior parietal cortex, revealing a distributed network that encodes person identity abstractly. Lastly, identity decoding was consistently better when participants attended to identity, indicating that attention to identity enhances its neural representation. These results offer new insights into how the brain develops an abstract neural coding of person identity, shared by faces and bodies.