Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Transporting and concentrating vibrational energy to promote isomerization

MPG-Autoren
/persons/resource/persons201379

Lau,  J. A.
Department of Dynamics at Surfaces, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons98266

Chen,  L.
Department of Dynamics at Surfaces, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons243915

Choudhury,  A.
Department of Dynamics at Surfaces, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15808

Schwarzer,  D.
Department of Dynamics at Surfaces, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons16046

Wodtke,  A. M.
Department of Dynamics at Surfaces, MPI for biophysical chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lau, J. A., Chen, L., Choudhury, A., Schwarzer, D., Verma, V. B., & Wodtke, A. M. (2021). Transporting and concentrating vibrational energy to promote isomerization. Nature, 589(7842), 391-395. doi:10.1038/s41586-020-03081-y.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-E5EC-D
Zusammenfassung
Visible-light absorption and transport of the resultant electronic excitations to a reaction centre through Förster resonance energy transfer1,2,3 (FRET) are critical to the operation of biological light-harvesting systems4, and are used in various artificial systems made of synthetic dyes5, polymers6 or nanodots7,8. The fundamental equations describing FRET are similar to those describing vibration-to-vibration (V–V) energy transfer9, and suggest that transport and localization of vibrational energy should, in principle, also be possible. Although it is known that vibrational excitation can promote reactions10,11,12,13,14,15,16, transporting and concentrating vibrational energy has not yet been reported. We have recently demonstrated orientational isomerization enabled by vibrational energy pooling in a CO adsorbate layer on a NaCl(100) surface17. Here we build on that work to show that the isomerization reaction proceeds more efficiently with a thick 12C16O overlayer that absorbs more mid-infrared photons and transports the resultant vibrational excitations by V–V energy transfer to a 13C18O–NaCl interface. The vibrational energy density achieved at the interface is 30 times higher than that obtained with direct excitation of the interfacial CO. We anticipate that with careful system design, these concepts could be used to drive other chemical transformations, providing new approaches to condensed phase chemistry.