English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The Role of Trehalose 6-Phosphate (Tre6P) in Plant Metabolism and Development

MPS-Authors
/persons/resource/persons212771

Fichtner,  F.
System Regulation, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97287

Lunn,  J. E.
System Regulation, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Fichtner, F., & Lunn, J. E. (2021). The Role of Trehalose 6-Phosphate (Tre6P) in Plant Metabolism and Development. Annual Review of Plant Biology, 72, 737-760. doi:10.1146/annurev-arplant-050718-095929.


Cite as: http://hdl.handle.net/21.11116/0000-0008-1397-8
Abstract
Trehalose 6-phosphate (Tre6P) has a dual function as a signal and homeostatic regulator of sucrose levels in plants. In source leaves, Tre6P regulates the production of sucrose to balance supply with demand for sucrose from growing sink organs. As a signal of sucrose availability, Tre6P influences developmental decisions that will affect future demand for sucrose, such as flowering, embryogenesis, and shoot branching, and links the growth of sink organs to sucrose supply. This involves complex interactions with SUCROSE-NON-FERMENTING1-RELATED KINASE1 that are not yet fully understood. Tre6P synthase, the enzyme that makes Tre6P, plays a key role in the nexus between sucrose and Tre6P, operating in the phloem-loading zone of leaves and potentially generating systemic signals for source-sink coordination. Many plants have large and diverse families of Tre6P phosphatase enzymes that dephosphorylate Tre6P, some of which have noncatalytic functions in plant development. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.