Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

High-field spin-flop state in green dioptase

MPG-Autoren
/persons/resource/persons207368

Nikitin,  S. E.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Prokhnenko, O., Marmorini, G., Nikitin, S. E., Yamamoto, D., Gazizulina, A., Bartkowiak, M., et al. (2021). High-field spin-flop state in green dioptase. Physical Review B, 103(1): 014427, pp. 1-12. doi:10.1103/PhysRevB.103.014427.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-032C-4
Zusammenfassung
The high-field magnetic properties and magnetic order of the gem mineral green dioptase Cu6[Si6O18]·6H2O have been studied by means of single-crystal neutron diffraction in magnetic fields up to 21 T and magnetization measurements up to 30 T. In zero field, the Cu2+ moments in the antiferromagnetic chains are oriented along the c axis with a small off-axis tilt. For a field applied parallel to the c axis, the magnetization shows a spin-flop-like transition at B∗=12.2 T at 1.5 K. Neutron diffraction experiments show a smooth behavior in the intensities of the magnetic reflections without any change in the periodicity of the magnetic structure. Bulk and microscopic observations are well described by a model of ferromagnetically coupled antiferromagnetic XXZ spin-12 chains, taking into account a change of the local easy-axis direction. We demonstrate that the magnetic structure evolves smoothly from a deformed Néel state at low fields to a deformed spin-flop state in a high field via a strong crossover around B∗. The results are generalized for different values of interchain coupling and spin anisotropy. © 2021 American Physical Society.