English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A DESGW search for the electromagnetic counterpart to the LIGO/Virgo gravitational-wave binary neutron star merger candidate S190510g

MPS-Authors
/persons/resource/persons221802

Varga,  T. N.
Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons25949

Weller,  J.
Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Garcia, A., Morgan, R., Herner, K., Palmese, A., Soares-Santos, M., Annis, J., et al. (2020). A DESGW search for the electromagnetic counterpart to the LIGO/Virgo gravitational-wave binary neutron star merger candidate S190510g. The Astrophysical Journal, 903(1): 75. doi:10.3847/1538-4357/abb823.


Cite as: https://hdl.handle.net/21.11116/0000-0007-EBF7-A
Abstract
We present the results from a search for the electromagnetic counterpart of the LIGO/Virgo event S190510g using the Dark Energy Camera (DECam). S190510g is a binary neutron star (BNS) merger candidate of moderate significance detected at a distance of 227 ± 92 Mpc and localized within an area of 31 (1166) square degrees at 50% (90%) confidence. While this event was later classified as likely nonastrophysical in nature within 30 hours of the event, our short latency search and discovery pipeline identified 11 counterpart candidates, all of which appear consistent with supernovae following offline analysis and spectroscopy by other instruments. Later reprocessing of the images enabled the recovery of six more candidates. Additionally, we implement our candidate selection procedure on simulated kilonovae and supernovae under DECam observing conditions (e.g., seeing and exposure time) with the intent of quantifying our search efficiency and making informed decisions on observing strategy for future similar events. This is the first BNS counterpart search to employ a comprehensive simulation-based efficiency study. We find that using the current follow-up strategy, there would need to be 19 events similar to S190510g for us to have a 99% chance of detecting an optical counterpart, assuming a GW170817-like kilonova. We further conclude that optimization of observing plans, which should include preference for deeper images over multiple color information, could result in up to a factor of 1.5 reduction in the total number of follow-ups needed for discovery.