English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Potential hazards of novel waste-derived sorbents for efficient removal of mercury from coal combustion flue gas

MPS-Authors
/persons/resource/persons256809

Li,  Zehua
State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology;
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Xu, Y., Luo, G., Zhang, Q., Cui, W., Li, Z., & Zhang, S. (2021). Potential hazards of novel waste-derived sorbents for efficient removal of mercury from coal combustion flue gas. Journal of Hazardous Materials, 412: 125226. doi:10.1016/j.jhazmat.2021.125226.


Cite as: https://hdl.handle.net/21.11116/0000-0007-F82A-3
Abstract
Novel waste-derived sorbents synthesized through one-step co-pyrolysis of wood and PVC (or brominated flame retarded plastic) were demonstrated as cost-effective sorbents for mercury (Hg) removal in our previous studies. To introduce magnetism and improve porosity, Fe species were further doped into such waste-derived sorbents. The ultimate fate of Hg-laden sorbents after their service is mainly disposed in landfill. Therefore, the stability of Hg/halogens on the spent sorbents is an important topic. In this work, the leachability of Hg/Cl/Br from four waste-derived sorbents was evaluated using toxicity characteristic leaching procedure (TCLP). Three traditional sorbents (Cl-impregnated activated carbon, Br-impregnated activated carbon and commercial activated carbon) were also tested for comparison. Experimental results suggested that the stability of Hg/Cl/Br on four waste-derived sorbents was far higher than that prepared by chemical impregnation. For four waste-derived sorbents, little Hg was leached out whereas certain amounts of Cl/Br escaped into the leachate. Interestingly, Fe-doping effectively improved the stability of Hg/Cl/Br on the waste-derived sorbents. Kinetic analysis revealed that diffusion process and surface chemical reaction were respectively the rate-limiting step for waste-derived sorbents before and after Fe-doping. Water-washing pretreatment could remove loosely-bonded Cl/Br from the waste-derived sorbents, while the Cl/Br essential for Hg removal was retained.