English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Enhanced selectivity of oxytocin antagonists containing sarcosine in position 7

MPS-Authors
/persons/resource/persons256837

Pávó,  Imre
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons206265

Fahrenholz,  Falk
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons251965

Klein,  Uwe
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pávó, I., Slaninova, J., Fahrenholz, F., & Klein, U. (1994). Enhanced selectivity of oxytocin antagonists containing sarcosine in position 7. European Journal of Medicinal Chemistry, 37(2), 255-259. doi:10.1021/jm00028a008.


Cite as: https://hdl.handle.net/21.11116/0000-0007-F05C-3
Abstract
Neurohypophyseal hormone analogues containing sarcosine (Sar) in position 7 were prepared to design more potent and selective oxytocin antagonists. The three analogues (1-3) of [Sar7]arginine-vasopressin ([Sar7]AVP) and six analogues (4-9) of [Sar7]arginine-vasotocin ([Sar7]AVT) had a reduced affinity for antidiuretic V2 receptors. The [Sar7]AVP derivatives (1-3) were potent antiuterotonic (in vitro pA2 = 7.5-8.4, in vivo 6.6-7.1) and antipressor (pA2 = 7.2-8.0) agents. The [Sar7]AVT analogues (4-9) were more potent and selective uterotonic antagonists (in vitro pA2 = 7.9-8.6, in vivo 7.1-7.5); their antipressor potencies were reduced (pA2 = 6.4-7.7). The change of the antagonistic potencies was paralleled by a change in the receptor affinities. Among other antiuterotonic analogues, [Mca1, D-Phe2, Sar7]AVT (4, Mca = beta-mercapto- beta,beta-cyclopentamethyl-enepropionic acid) and [Mca1, D-Tyr(OEt)2,Sar7]AVT (6) were synthesized, two highly potent antiuterotonic compounds (in vitro pA2 = 8.3, in vivo 7.4 and 7.5, respectively) with reduced antipressor activity (pA2 = 6.4) and reduced binding affinity to V2 receptors (Kd = 421 and 35 nM, respectively) and no anti-antidiuretic effect. Another potent antiuterotonic analogue, [Mca1,D-Trp2,-Sar7]AVT (9, in vitro pA2capability to V2 receptors (Kd approximately 0.3 mM). These analogues should lead to the design of even more potent and selective oxytocin antagonists.