English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

ENTYFI: A System for Fine-grained Entity Typing in Fictional Texts

MPS-Authors
/persons/resource/persons180796

Chu,  Cuong Xuan
Databases and Information Systems, MPI for Informatics, Max Planck Society;

/persons/resource/persons212613

Razniewski,  Simon
Databases and Information Systems, MPI for Informatics, Max Planck Society;

/persons/resource/persons45720

Weikum,  Gerhard
Databases and Information Systems, MPI for Informatics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Chu, C. X., Razniewski, S., & Weikum, G. (2020). ENTYFI: A System for Fine-grained Entity Typing in Fictional Texts. In Q. Liu, & D. Schlangen (Eds.), The 2020 Conference on Empirical Methods in Natural Language Processing (pp. 100-106). Stroudsburg, PA: ACM. doi:10.18653/v1/2020.emnlp-demos.14.


Cite as: https://hdl.handle.net/21.11116/0000-0007-EED5-D
Abstract
There is no abstract available