日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Elucidating the control and development of skin patterning in cuttlefish

MPS-Authors
/persons/resource/persons208073

Laurent,  Gilles
Neural systems Department, Max Planck Institute for Brain Research, Max Planck Society;

External Resource

https://www.ncbi.nlm.nih.gov/pubmed/30333578
(全文テキスト(全般))

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Reiter, S., Hülsdunk, P., Woo, T., Lauterbach, M. A., Eberle, J. S., Akay, L. A., Longo, A., Meier-Credo, J., Kretschmer, F., Langer, J. D., Kaschube, M., & Laurent, G. (2018). Elucidating the control and development of skin patterning in cuttlefish. Nature, 562(7727), 361-366. doi:10.1038/s41586-018-0591-3.


引用: https://hdl.handle.net/21.11116/0000-0008-079A-3
要旨
Few animals provide a readout that is as objective of their perceptual state as camouflaging cephalopods. Their skin display system includes an extensive array of pigment cells (chromatophores), each expandable by radial muscles controlled by motor neurons. If one could track the individual expansion states of the chromatophores, one would obtain a quantitative description-and potentially even a neural description by proxy-of the perceptual state of the animal in real time. Here we present the use of computational and analytical methods to achieve this in behaving animals, quantifying the states of tens of thousands of chromatophores at sixty frames per second, at single-cell resolution, and over weeks. We infer a statistical hierarchy of motor control, reveal an underlying low-dimensional structure to pattern dynamics and uncover rules that govern the development of skin patterns. This approach provides an objective description of complex perceptual behaviour, and a powerful means to uncover the organizational principles that underlie the function, dynamics and morphogenesis of neural systems.