Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Book Chapter

Cortical Evolution: Introduction to the Reptilian Cortex


Laurent,  Gilles
Neural systems Department, Max Planck Institute for Brain Research, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Laurent, G., Fournier, J., Hemberger, M., Muller, C., Naumann, R., Ondracek, J. M., et al. (2016). Cortical Evolution: Introduction to the Reptilian Cortex. In G. Buzsaki, & Y. Christen (Eds.), Micro-, Meso- and Macro-Dynamics of the Brain (pp. 23-33).

Cite as: https://hdl.handle.net/21.11116/0000-0008-07A0-B
Some 320 million years ago (MYA), the evolution of a protective membrane surrounding the embryo, the amnion, enabled vertebrates to develop outside water and thus invade new terrestrial niches. These amniotes were the ancestors of today's mammals and sauropsids (reptiles and birds). Present-day reptiles are a diverse group of more than 10,000 species that comprise the sphenodon, lizards, snakes, turtles and crocodilians. Although turtles were once thought to be the most "primitive" among the reptiles, current genomic data point toward two major groupings: the Squamata (lizards and snakes) and a group comprising both the turtles and the Archosauria (dinosaurs and modern birds and crocodiles). Dinosaurs inhabited the Earth from the Triassic (230 MYA), at a time when the entire landmass formed a single Pangaea. Dinosaurs flourished from the beginning of the Jurassic to the mass extinction at the end of the Cretaceous (65 MYA), and birds are their only survivors. What people generally call reptiles is thus a group defined in part by exclusion: it gathers amniote species that are neither mammals nor birds, making the reptiles technically a paraphyletic grouping. Despite this, the so-defined reptiles share many evolutionary, anatomical, developmental, physiological (e.g., ectothermia), and functional features. It is thus reasonable to talk about a "reptilian brain."