English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dendritic excitability and a voltage-gated calcium current in locust nonspiking local interneurons

MPS-Authors
/persons/resource/persons208073

Laurent,  Gilles
Neural systems Department, Max Planck Institute for Brain Research, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Laurent, G., Seymour-Laurent, K. J., & Johnson, K. (1993). Dendritic excitability and a voltage-gated calcium current in locust nonspiking local interneurons. J Neurophysiol, 69(5), 1484-98. doi:10.1152/jn.1993.69.5.1484.


Cite as: https://hdl.handle.net/21.11116/0000-0008-082C-F
Abstract
1. The active properties of axonless nonspiking interneurons in the thoracic nervous system of the locust Schistocerca americana were studied in vivo with the switched current-clamp technique from dendritic impalements, and in vitro with the whole-cell variation of the patch-clamp technique. 2. In 20% of in vivo recordings, depolarization of a dendrite to potentials more positive than about -40 mV evoked resonant behaviour and/or regenerative potentials. The latter were slow (half width: 20-30 ms), small (base-to-peak amplitude: 25-35 mV), and were often followed by a pronounced after hyperpolarization (AHP). 3. The slow regenerative potentials sometimes had multiple peaks separated by incomplete repolarizations. The voltage envelope of such potentials was always broader than that of spikes with single peaks. In other recordings, a same depolarizing pulse could evoke several regenerative potentials with different waveforms. These results suggested the presence of multiple dendritic initiation sites separated by regions of inexcitable membrane, allowing decremental conduction and the passive fusion of spike envelopes. 4. Graded active responses could also be evoked on rebound from short hyperpolarizations such as inhibitory postsynaptic potentials (IPSPs) provided that the membrane was already depolarized to about -40 mV. IPSPs evoked by several presynaptic interneurons differed in their ability to evoke rebound potentials suggesting that some synaptic sites were electrically closer than others to regions of active membrane. 5. Patch-clamp recordings from somata of nonspiking neurons isolated from 75% embryos and grown in culture medium for 1-2 days revealed the presence of an inactivating inward current resistant to 0.5-1 microM tetrodotoxin (TTX). The inward current was carried equally well by Ba2+, and sensitive to blockade by Cd2+ (0.5 mM), Ni2+ (0.75 mM), or Co2+ (2.5 mM). 6. The current activated around -40 mV, with voltage-dependent activation (time-to-peak approximately 20 ms at -35 mV and 1-2 ms at 0 mV). Tail currents evoked upon repolarization were well fitted by a single exponential (tau = 1-2 ms). Deactivation time constants shorter than 300 microseconds, however, could not be measured. 7. The current inactivated rapidly in a voltage-dependent manner, following two-exponential kinetics. A very small persistent component could be explained by the overlap between activation and inactivation curves, greatest at approximately -20 mV. The voltage of half-inactivation was about -25 mV. At a resting potential of -58 mV, 90% of the current was available for activation. Recovery from steady-state inactivation followed the sum of two or more exponential processes.(ABSTRACT TRUNCATED AT 400 WORDS)