English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

ESCRT recruitment by the S. cerevisiae inner nuclear membrane protein Heh1 is regulated by Hub1-mediated alternative splicing

MPS-Authors
/persons/resource/persons257338

Capella,  Matías
Jentsch, Stefan / Molecular Cell Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78499

Pfander,  Boris
Pfander, Boris / DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons77807

Braun,  Sigurd
Jentsch, Stefan / Molecular Cell Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78165

Jentsch,  Stefan
Jentsch, Stefan / Molecular Cell Biology, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Capella, M., Caballero, L. M., Pfander, B., Braun, S., & Jentsch, S. (2020). ESCRT recruitment by the S. cerevisiae inner nuclear membrane protein Heh1 is regulated by Hub1-mediated alternative splicing. Journal of Cell Science, 133(24): jcs250688. doi:10.1242/jcs.250688.


Cite as: http://hdl.handle.net/21.11116/0000-0008-0B21-7
Abstract
Misassembled nuclear pore complexes (NPCs) are removed by sealing off the surrounding nuclear envelope (NE), which is conducted by the endosomal sorting complexes required for transport (ESCRT) machinery. Recruitment of ESCRT proteins to the NE is mediated by the interaction between the ESCRT member Chm7 and the inner nuclear membrane protein Heh1, which belongs to the conserved LEM family. Increased ESCRT recruitment results in excessive membrane scission at damage sites but its regulation remains poorly understood. Here, we show that Hub1-mediated alternative splicing of HEH1 pre-mRNA, resulting in production of its shorter form Heh1-S, is critical for the integrity of the NE in Saccharomyces cerevisiae. ESCRT-III mutants lacking Hub1 or Heh1-S display severe growth defects and accumulate improperly assembled NPCs. This depends on the interaction of Chm7 with the conserved MSC domain, which is only present in the longer variant Heh1-L. Heh1 variants assemble into heterodimers, and we demonstrate that a unique splice segment in Heh1-S suppresses growth defects associated with the uncontrolled interaction between Heh1-L and Chm7. Together, our findings reveal that Hub1-mediated splicing generates Heh1-S to regulate ESCRT recruitment to the NE.