English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Preprint

Measurement report: In situ observations of deep convection without lightning during the tropical cyclone Florence 2018

MPS-Authors
/persons/resource/persons256981

Nussbaumer,  Clara
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons192706

Tadic,  Ivan
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons239557

Dienhart,  Dirk
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons239555

Wang,  Nijing
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons207353

Edtbauer,  Achim
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons211374

Ernle,  Lisa
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101364

Williams,  Jonathan
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100983

Harder,  Hartwig
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101104

Lelieveld,  Jos
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100935

Fischer,  Horst
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Nussbaumer, C., Tadic, I., Dienhart, D., Wang, N., Edtbauer, A., Ernle, L., et al. (2021). Measurement report: In situ observations of deep convection without lightning during the tropical cyclone Florence 2018. Atmospheric Chemistry and Physics Discussions, 21. doi:10.5194/acp-2021-79.


Cite as: https://hdl.handle.net/21.11116/0000-0007-F301-5
Abstract
Hurricane Florence was the sixth named storm in the Atlantic hurricane season 2018. It caused dozens of deaths and major economic damage. In this study, we present in situ observations of trace gases within tropical storm Florence on September 2, 2018 after it had developed a rotating nature, and of a tropical wave observed close to the African continent on August 29, 2018 as part of the research campaign CAFE Africa (Chemistry of the Atmosphere – Field Experiment in Africa) with the HALO (High Altitude Long Range) research aircraft. We show the impact of deep convection on atmospheric composition by measurements of the trace gases nitric oxide (NO), ozone (O3), carbon monoxide (CO), hydrogen peroxide (H2O2), dimethyl sulfide (DMS) and methyl iodide (CH3I), and by the help of color enhanced infrared satellite imagery taken by GOES-16. While both systems, the tropical wave and the tropical storm, are deeply convective, we only find evidence for lightning in the tropical wave using both in situ NO measurements and data from the World Wide Lightning Location Network (WWLLN).