English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Electrophysiological analysis of the mutated Na,K-ATPase cation binding pocket

MPS-Authors
/persons/resource/persons256998

Koenderink,  Jan B.
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137667

Geibel,  Sven
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137679

Grabsch,  Eva
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137592

Bamberg,  Ernst
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137658

Friedrich,  Thomas
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Koenderink, J. B., Geibel, S., Grabsch, E., De Pont, J. J. H., Bamberg, E., & Friedrich, T. (2003). Electrophysiological analysis of the mutated Na,K-ATPase cation binding pocket. The Journal of Biological Chemistry, 278(51), 51213-51222. doi:10.1074/jbc.M306384200.


Cite as: https://hdl.handle.net/21.11116/0000-0007-F53D-1
Abstract
Na,K-ATPase mediates net electrogenic transport by extruding three Na+ ions and importing two K+ ions across the plasma membrane during each reaction cycle. We mutated putative cation coordinating amino acids in transmembrane hairpin M5-M6 of rat Na,K-ATPase: Asp776 (Gln, Asp, Ala), Glu779 (Asp, Gln, Ala), Asp804 (Glu, Asn, Ala), and Asp808 (Glu, Asn, Ala). Electrogenic cation transport properties of these 12 mutants were analyzed in two-electrode voltage-clamp experiments on Xenopus laevis oocytes by measuring the voltage dependence of K+-stimulated stationary currents and pre-steady-state currents under electrogenic Na+/Na+ exchange conditions. Whereas mutants D804N, D804A, and D808A hardly showed any Na+/K+ pump currents, the other constructs could be classified according to the [K+] and voltage dependence of their stationary currents; mutants N776A and E779Q behaved similarly to the wild-type enzyme. Mutants E779D, E779A, D808E, and D808N had in common a decreased apparent affinity for extracellular K+. Mutants N776Q, N776D, and D804E showed large deviations from the wild-type behavior; the currents generated by mutant N776D showed weaker voltage dependence, and the current-voltage curves of mutants N776Q and D804E exhibited a negative slope. The apparent rate constants determined from transient Na+/Na+ exchange currents are rather voltage-independent and at potentials above -60 mV faster than the wild type. Thus, the characteristic voltage-dependent increase of the rate constants at hyperpolarizing potentials is almost absent in these mutants. Accordingly, dislocating the carboxamide or carboxyl group of Asn776 and Asp804, respectively, decreases the extracellular Na+ affinity.