English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Translational diffusion in phospholipid monolayers measured by fluorescence microphotolysis

MPS-Authors
/persons/resource/persons252016

Peters,  Reiner
Department of Cell Physiology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons257052

Beck,  Konrad
Department of Cell Physiology, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Peters, R., & Beck, K. (1983). Translational diffusion in phospholipid monolayers measured by fluorescence microphotolysis. Proceedings of the National Academy of Sciences of the United States of America, 80(23), 7183-7187. doi:10.1073/pnas.80.23.7183.


Cite as: http://hdl.handle.net/21.11116/0000-0007-F868-D
Abstract
A method is described that eliminates surface flow in monolayers at the air-water interface and makes possible diffusion measurements by fluorescence microphotolysis ("photobleaching"). In contrast to previous studies that did not account for surface flow, lipid probe diffusion has been found to be similar in densely packed monolayers and in related bilayers. Furthermore, it seems that lipid diffusion is based on the same molecular mechanism in monolayers, bilayers, and potentially also cell membranes. In monolayers of L-alpha-dilauroylphosphatidylcholine (Lau2-PtdCho) the translational diffusion coefficient D of the fluorescent lipid probe N-4-nitrobenzo-2-oxa-1,3 diazole egg phosphatidylethanolamine decreased from 110 microns2/s at a surface pressure II = 1 mN/m to 15 microns2/s at II = 38 mN/m (T = 21-22 degrees C). Data could be fitted by the "free volume model." In monolayers of L-alpha-dipalmitoylphosphatidylcholine (Pam2-PtdCho) D decreased by greater than 3 orders of magnitude upon increasing II at constant temperature, thus indicating a fluid-to-crystalline phase transition. In Lau2-PtdCho/Pam2-PtdCho monolayers phase separation has been visualized in the fluorescence microscope and the effect on D measured. These results suggest that monolayers are a promising model system for studying the molecular mobility of lipids and other cell membrane components.