English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: BAO and RSD measurements from the anisotropic power spectrum of the quasar sample between redshift 0.8 and 2.2

MPS-Authors
/persons/resource/persons221189

Hou,  Jiamin
Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Neveux, R., Burtin, E., de Mattia, A., Smith, A., Ross, A. J., Hou, J., et al. (2020). The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: BAO and RSD measurements from the anisotropic power spectrum of the quasar sample between redshift 0.8 and 2.2. Monthly Notices of the Royal Astronomical Society, 499(1), 210-229. doi:10.1093/mnras/staa2780.


Cite as: https://hdl.handle.net/21.11116/0000-0007-F72B-3
Abstract
We measure the clustering of quasars of the final data release (DR16) of eBOSS. The sample contains 343708 quasars between redshifts 0.8 ≤ z ≤ 2.2 over 4699deg2⁠. We calculate the Legendre multipoles (0,2,4) of the anisotropic power spectrum and perform a BAO and a Full-Shape (FS) analysis at the effective redshift zeff = 1.480. The errors include systematic errors that amount to 1/3 of the statistical error. The systematic errors comprise a modelling part studied using a blind N-body mock challenge and observational effects studied with approximate mocks to account for various types of redshift smearing and fibre collisions. For the BAO analysis, we measure the transverse comoving distance DM(zeff)/rdrag = 30.60 ± 0.90 and the Hubble distance DH(zeff)/rdrag = 13.34 ± 0.60. This agrees with the configuration space analysis, and the consensus yields: DM(zeff)/rdrag = 30.69 ± 0.80 and DH(zeff)/rdrag = 13.26 ± 0.55. In the FS analysis, we fit the power spectrum using a model based on Regularised Perturbation Theory, which includes redshift space distortions and the Alcock–Paczynski effect. The results are DM(zeff)/rdrag = 30.68 ± 0.90 and DH(zeff)/rdrag = 13.52 ± 0.51 and we constrain the linear growth rate of structure f(zeff8(zeff) = 0.476 ± 0.047. Our results agree with the configuration space analysis. The consensus analysis of the eBOSS quasar sample yields: DM(zeff)/rdrag = 30.21 ± 0.79, DH(zeff)/rdrag = 3.23 ± 0.47, and f(zeff8(zeff) = 0.462 ± 0.045 and is consistent with a flat ΛCDM cosmological model using Planck results.