Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

An overlap fitted chain of spheres exchange method

MPG-Autoren
/persons/resource/persons216815

Izsák,  Róbert
Lehrstuhl für Theoretische Chemie, Institut für Physikalische und Theoretische Chemie;
Research Department Neese, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society;

/persons/resource/persons216825

Neese,  Frank
Lehrstuhl für Theoretische Chemie, Institut für Physikalische und Theoretische Chemie;
Research Department Neese, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Izsák, R., & Neese, F. (2011). An overlap fitted chain of spheres exchange method. The Journal of Chemical Physics, 135(14): 144105. doi:10.1063/1.3646921.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-FF61-D
Zusammenfassung
The “chain of spheres” (COS) algorithm, as part of the RIJCOSX SCF procedure, approximates the exchange term by performing analytic integration with respect to the coordinates of only one of the two electrons, whereas for the remaining coordinates, integration is carried out numerically. In the present work, we attempt to enhance the efficiency of the method by minimizing numerical errors in the COS procedure. The main idea is based on the work of Friesner and consists of finding a fitting matrix, Q, which leads the numerical and analytically evaluated overlap matrices to coincide. Using Q
, the evaluation of exchange integrals can indeed be improved. Improved results and timings are obtained with the present default grid setup for both single point calculations and geometry optimizations. The fitting procedure results in a reduction of grid sizes necessary for achieving chemical accuracy. We demonstrate this by testing a number of grids and comparing results to the fully analytic and the earlier COS approximations. This turns out to be favourable for total and reaction energies, for which chemical accuracy can now be reached with a corresponding ∼30% speedup over the original RIJCOSX procedure for single point energies. Results are slightly less favourable for the accuracy of geometry optimizations, but the procedure is still shown to yield geometries with errors well below the method inherent errors of the employed theoretical framework.