English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Electronic Structure of a Weakly Antiferromagnetically Coupled MnIIMnIII Model Relevant to Manganese Proteins: A Combined EPR, 55Mn-ENDOR, and DFT Study

MPS-Authors
/persons/resource/persons237557

Cox,  Nicholas
Research Department Lubitz, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society;

/persons/resource/persons237528

Ames,  William
Research Department Lubitz, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society;
Lehrstuhl für Theoretische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Bonn;

/persons/resource/persons237566

Epel,  Boris
Research Department Lubitz, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society;

/persons/resource/persons237681

Rapatskiy,  Leonid
Research Department Lubitz, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society;

/persons/resource/persons216825

Neese,  Frank
Lehrstuhl für Theoretische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Bonn;
Research Department Neese, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society;

/persons/resource/persons237748

Wieghardt,  Karl
Research Department Wieghardt, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society;

/persons/resource/persons237637

Lubitz,  Wolfgang
Research Department Lubitz, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Cox, N., Ames, W., Epel, B., Kulik, L. V., Rapatskiy, L., Neese, F., et al. (2011). Electronic Structure of a Weakly Antiferromagnetically Coupled MnIIMnIII Model Relevant to Manganese Proteins: A Combined EPR, 55Mn-ENDOR, and DFT Study. Inorganic Chemistry, 50(17), 8238-8251. doi:10.1021/ic200767e.


Cite as: http://hdl.handle.net/21.11116/0000-0007-FF57-9
Abstract
An analysis of the electronic structure of the [MnIIMnIII(μ-OH)-(μ-piv)2(Me3tacn)2](ClO4)2 (PivOH) complex is reported. It displays features that include: (i) a ground 1/2 spin state; (ii) a small exchange (J) coupling between the two Mn ions; (iii) a mono-μ-hydroxo bridge, bis-μ-carboxylato motif; and (iv) a strongly coupled, terminally bound N ligand to the MnIII. All of these features are observed in structural models of the oxygen evolving complex (OEC). Multifrequency electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) measurements were performed on this complex, and the resultant spectra simulated using the Spin Hamiltonian formalism. The strong field dependence of the 55Mn-ENDOR constrains the 55Mn hyperfine tensors such that a unique solution for the electronic structure can be deduced. Large hyperfine anisotropy is required to reproduce the EPR/ENDOR spectra for both the MnII and MnIII ions. The large effective hyperfine tensor anisotropy of the MnII, a d5 ion which usually exhibits small anisotropy, is interpreted within a formalism in which the fine structure tensor of the MnIII ion strongly perturbs the zero-field energy levels of the MnIIMnIII complex. An estimate of the fine structure parameter (d) for the MnIII of −4 cm–1 was made, by assuming the intrinsic anisotropy of the MnII ion is small. The magnitude of the fine structure and intrinsic (onsite) hyperfine tensor of the MnIII is consistent with the known coordination environment of the MnIII ion as seen from its crystal structure. Broken symmetry density functional theory (DFT) calculations were performed on the crystal structure geometry. DFT values for both the isotropic and the anisotropic components of the onsite (intrinsic) hyperfine tensors match those inferred from the EPR/ENDOR simulations described above, to within 5%. This study demonstrates that DFT calculations provide reliable estimates for spectroscopic observables of mixed valence Mn complexes, even in the limit where the description of a well isolated S = 1/2 ground state begins to break down.