English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Cartier modules and cyclotomic spectra

MPS-Authors
/persons/resource/persons257186

Antieau,  Benjamin
Max Planck Institute for Mathematics, Max Planck Society;

/persons/resource/persons235894

Nikolaus,  Thomas
Max Planck Institute for Mathematics, Max Planck Society;

External Ressource

https://doi.org/10.1090/jams/951
(Publisher version)

Fulltext (public)

1809.01714.pdf
(Preprint), 9KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Antieau, B., & Nikolaus, T. (2021). Cartier modules and cyclotomic spectra. Journal of the American Mathematical Society, 34(1), 1-78. doi:10.1090/jams/951.


Cite as: http://hdl.handle.net/21.11116/0000-0008-021D-6
Abstract
We construct and study a t-structure on p-typical cyclotomic spectra and explain how to recover crystalline cohomology of smooth schemes over perfect fields using this t-structure. Our main tool is a new approach to p-typical cyclotomic spectra via objects we call p-typical topological Cartier modules. Using these, we prove that the heart of the cyclotomic t-structure is the full subcategory of derived V-complete objects in the abelian category of p-typical Cartier modules.