Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Decoding pattern motion information in V1

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

van Kemenade, B., Seymour, K., Christophel, T., Rothkirch, M., & Sterzer, P. (2014). Decoding pattern motion information in V1. Cortex, 57, 177-187. doi:10.1016/j.cortex.2014.04.014.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-02AE-2
Zusammenfassung
When two gratings drifting in different directions are superimposed, the resulting stimulus can be perceived as two overlapping component gratings moving in different directions or as a single pattern moving in one direction. Whilst the motion direction of component gratings is already represented in visual area V1, the majority of previous studies have found processing of pattern motion direction only from visual area V2 onwards. Here, we question these findings using multi-voxel pattern analysis (MVPA). In Experiment 1, we presented superimposed sinusoidal gratings with varying angles between the two component motions. These stimuli were perceived as patterns moving in one of two possible directions. We found that linear support vector machines (SVMs) could generalise across stimuli composed of different component motions to successfully discriminate pattern motion direction from brain activity in V1, V3A and hMT+/V5. This demonstrates the representation of pattern motion information present in these visual areas. This conclusion was verified in Experiment 2, where we manipulated similar plaid stimuli to induce the perception of either a single moving pattern or two separate component gratings. While a classifier could again generalise across stimuli composed of different component motions when they were perceived as a single moving pattern, its performance dropped substantially in the case where components were perceived. Our results indicate that pattern motion direction information is present in V1.