English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Decoding pattern motion information in V1

MPS-Authors
There are no MPG-Authors in the publication available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

van Kemenade, B., Seymour, K., Christophel, T., Rothkirch, M., & Sterzer, P. (2014). Decoding pattern motion information in V1. Cortex, 57, 177-187. doi:10.1016/j.cortex.2014.04.014.


Cite as: https://hdl.handle.net/21.11116/0000-0008-02AE-2
Abstract
When two gratings drifting in different directions are superimposed, the resulting stimulus can be perceived as two overlapping component gratings moving in different directions or as a single pattern moving in one direction. Whilst the motion direction of component gratings is already represented in visual area V1, the majority of previous studies have found processing of pattern motion direction only from visual area V2 onwards. Here, we question these findings using multi-voxel pattern analysis (MVPA). In Experiment 1, we presented superimposed sinusoidal gratings with varying angles between the two component motions. These stimuli were perceived as patterns moving in one of two possible directions. We found that linear support vector machines (SVMs) could generalise across stimuli composed of different component motions to successfully discriminate pattern motion direction from brain activity in V1, V3A and hMT+/V5. This demonstrates the representation of pattern motion information present in these visual areas. This conclusion was verified in Experiment 2, where we manipulated similar plaid stimuli to induce the perception of either a single moving pattern or two separate component gratings. While a classifier could again generalise across stimuli composed of different component motions when they were perceived as a single moving pattern, its performance dropped substantially in the case where components were perceived. Our results indicate that pattern motion direction information is present in V1.