Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Neuroligin 1 is dynamically exchanged at postsynaptic sites

MPG-Autoren
/persons/resource/persons257476

Stempel,  A. Vanessa
Instinctive Behaviour Circuits, Max Planck Institute for Brain Research, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schapitz, I. U., Behrend, B., Pechmann, Y., Lappe-Siefke, C., Kneussel, S. J., Wallace, K. E., et al. (2010). Neuroligin 1 is dynamically exchanged at postsynaptic sites. J Neurosci, 30(38), 12733-44. doi:10.1523/JNEUROSCI.0896-10.2010.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-17F6-9
Zusammenfassung
Neuroligins are postsynaptic cell adhesion molecules that associate with presynaptic neurexins. Both factors form a transsynaptic connection, mediate signaling across the synapse, specify synaptic functions, and play a role in synapse formation. Neuroligin dysfunction impairs synaptic transmission, disrupts neuronal networks, and is thought to participate in cognitive diseases. Here we report that chemical treatment designed to induce long-term potentiation or long-term depression (LTD) induces neuroligin 1/3 turnover, leading to either increased or decreased surface membrane protein levels, respectively. Despite its structural role at a crucial transsynaptic position, GFP-neuroligin 1 leaves synapses in hippocampal neurons over time with chemical LTD-induced neuroligin internalization depending on an intact microtubule cytoskeleton. Accordingly, neuroligin 1 and its binding partner postsynaptic density protein-95 (PSD-95) associate with components of the dynein motor complex and undergo retrograde cotransport with a dynein subunit. Transgenic depletion of dynein function in mice causes postsynaptic NLG1/3 and PSD-95 enrichment. In parallel, PSD lengths and spine head sizes are significantly increased, a phenotype similar to that observed upon transgenic overexpression of NLG1 (Dahlhaus et al., 2010). Moreover, application of a competitive PSD-95 peptide and neuroligin 1 C-terminal mutagenesis each specifically alter neuroligin 1 surface membrane expression and interfere with its internalization. Our data suggest the concept that synaptic plasticity regulates neuroligin turnover through active cytoskeleton transport.