English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A triplet spike-timing-dependent plasticity model generalizes the Bienenstock-Cooper-Munro rule to higher-order spatiotemporal correlations

MPS-Authors
/persons/resource/persons207974

Gjorgjieva,  Julijana
Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Gjorgjieva, J., Clopath, C., Audet, J., & Pfister, J. P. (2011). A triplet spike-timing-dependent plasticity model generalizes the Bienenstock-Cooper-Munro rule to higher-order spatiotemporal correlations. Proc Natl Acad Sci U S A, 108(48), 19383-19388. doi:10.1073/pnas.1105933108.


Cite as: https://hdl.handle.net/21.11116/0000-0008-0D57-9
Abstract
Synaptic strength depresses for low and potentiates for high activation of the postsynaptic neuron. This feature is a key property of the Bienenstock-Cooper-Munro (BCM) synaptic learning rule, which has been shown to maximize the selectivity of the postsynaptic neuron, and thereby offers a possible explanation for experience-dependent cortical plasticity such as orientation selectivity. However, the BCM framework is rate-based and a significant amount of recent work has shown that synaptic plasticity also depends on the precise timing of presynaptic and postsynaptic spikes. Here we consider a triplet model of spike-timing-dependent plasticity (STDP) that depends on the interactions of three precisely timed spikes. Triplet STDP has been shown to describe plasticity experiments that the classical STDP rule, based on pairs of spikes, has failed to capture. In the case of rate-based patterns, we show a tight correspondence between the triplet STDP rule and the BCM rule. We analytically demonstrate the selectivity property of the triplet STDP rule for orthogonal inputs and perform numerical simulations for nonorthogonal inputs. Moreover, in contrast to BCM, we show that triplet STDP can also induce selectivity for input patterns consisting of higher-order spatiotemporal correlations, which exist in natural stimuli and have been measured in the brain. We show that this sensitivity to higher-order correlations can be used to develop direction and speed selectivity.