English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Identification of linear response functions from arbitrary perturbation experiments in the presence of noise - Part I. Method development and toy model demonstration

MPS-Authors
/persons/resource/persons252610

Torres Mendonca,  Guilherme Luiz
Global Vegetation Modelling, The Land in the Earth System, MPI for Meteorology, Max Planck Society;
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37296

Pongratz,  Julia       
Emmy Noether Junior Research Group Forest Management in the Earth System, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37304

Reick,  Christian H.
Global Vegetation Modelling, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

npg-28-501-2021.pdf
(Publisher version), 6MB

Supplementary Material (public)

Sup_PartI.tar.gz
(Supplementary material), 2MB

Citation

Torres Mendonca, G. L., Pongratz, J., & Reick, C. H. (2021). Identification of linear response functions from arbitrary perturbation experiments in the presence of noise - Part I. Method development and toy model demonstration. Nonlinear Processes in Geophysics, 28, 501-532. doi:10.5194/npg-28-501-2021.


Cite as: https://hdl.handle.net/21.11116/0000-0008-0F02-6
Abstract
Existent methods to identify linear response functions from data require tailored perturbation experiments, e.g., impulse or step experiments, and if the system is noisy, these experiments need to be repeated several times to obtain good statistics. In contrast, for the method developed here, data from only a single perturbation experiment at arbitrary perturbation are sufficient if in addition data from an unperturbed (control) experiment are available. To identify the linear response function for this ill-posed problem, we invoke regularization theory. The main novelty of our method lies in the determination of the level of background noise needed for a proper estimation of the regularization parameter: this is achieved by comparing the frequency spectrum of the perturbation experiment with that of the additional control experiment. The resulting noise-level estimate can be further improved for linear response functions known to be monotonic. The robustness of our method and its advantages are investigated by means of a toy model. We discuss in detail the dependence of the identified response function on the quality of the data (signal-to-noise ratio) and on possible nonlinear contributions to the response. The method development presented here prepares in particular for the identification of carbon cycle response functions in Part 2 of this study (Torres Mendonça et al., 2021a). However, the core of our method, namely our new approach to obtaining the noise level for a proper estimation of the regularization parameter, may find applications in also solving other types of linear ill-posed problems.