English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Clostridium difficile toxin CDT hijacks microtubule organization and reroutes vesicle traffic to increase pathogen adherence

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schwan, C., Kruppke, A. S., Nölke, A., Schumacher, L., Koch-Nolte, F., Kudryashev, M., et al. (2014). Clostridium difficile toxin CDT hijacks microtubule organization and reroutes vesicle traffic to increase pathogen adherence. Proceedings of the National Academy of Sciences of the United States of America, 111(6), 2313-2318. doi:10.1073/pnas.1311589111.


Cite as: https://hdl.handle.net/21.11116/0000-0008-1143-9
Abstract
Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by the actions of Rho-glucosylating toxins A and B. Recently identified hypervirulent strains, which are associated with increased morbidity and mortality, additionally produce the actin-ADP-ribosylating toxin C. difficile transferase (CDT). CDT depolymerizes actin, causes formation of microtubule-based protrusions, and increases pathogen adherence. Here we show that CDT-induced protrusions allow vesicle traffic and contain endoplasmic reticulum tubules, connected to microtubules via the calcium sensor Stim1. The toxin reroutes Rab11-positive vesicles containing fibronectin, which is involved in bacterial adherence, from basolateral to the apical membrane sides in a microtubule- and Stim1-dependent manner. The data yield a model of C. difficile adherence regulated by actin depolymerization, microtubule restructuring, subsequent Stim1-dependent Ca2+ signaling, vesicle rerouting, and secretion of ECM proteins to increase bacterial adherence.