Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Nonequilibrium polarity-induced chemotaxis: Emergent Galilean symmetry and exact scaling exponents

MPG-Autoren
/persons/resource/persons257430

Mahdisoltani,  Saeed
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons219873

Golestanian,  Ramin
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mahdisoltani, S., Zinati, R. B. A., Duclut, C., Gambassi, A., & Golestanian, R. (2021). Nonequilibrium polarity-induced chemotaxis: Emergent Galilean symmetry and exact scaling exponents. Physical Review Research, 3: 013100. doi:10.1103/PhysRevResearch.3.013100.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-1180-3
Zusammenfassung
A generically observed mechanism that drives the self-organization of living systems is interaction via chemical signals among the individual elements—which may represent cells, bacteria, or even enzymes. Here we propose an unconventional mechanism for such interactions, in the context of chemotaxis, which originates from the polarity of the particles and which generalizes the well-known Keller-Segel interaction term. We study the resulting large-scale dynamical properties of a system of such chemotactic particles using the exact stochastic formulation of Dean and Kawasaki along with dynamical renormalization group analysis of the critical state of the system. At this critical point, an emergent “Galilean” symmetry is identified, which allows us to obtain the dynamical scaling exponents exactly. These exponents reveal superdiffusive density fluctuations and non-Poissonian number fluctuations. We expect our results to shed light on how molecular regulation of chemotactic circuits can determine large-scale behavior of cell colonies and tissues.