Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Objective Compressive Quantum Process Tomography

MPG-Autoren

Leuchs,  G.
Emeritus Group Leuchs, Emeritus Groups, Max Planck Institute for the Science of Light, Max Planck Society;

Sanchez-Soto,  L. L.
Quantumness, Tomography, Entanglement, and Codes, Emeritus Group Leuchs, Emeritus Groups, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1911.06122.pdf
(Preprint), 9KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Teo, Y. S., Struchalin, G. I., Kovlakov, E. V., Ahn, D., Jeong, H., Straupe, S. S., et al. (2020). Objective Compressive Quantum Process Tomography. Physical Review A, 101(2): 022334. doi:10.1103/PhysRevA.101.022334.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-12BE-E
Zusammenfassung
We present a compressive quantum process tomography scheme that fully
characterizes any rank-deficient completely-positive process with no a priori
information about the process apart from the dimension of the system on which
the process acts. It uses randomly-chosen input states and adaptive output von
Neumann measurements. Both entangled and tensor-product configurations are
flexibly employable in our scheme, the latter which naturally makes it
especially compatible with many-body quantum computing. Two main features of
this scheme are the certification protocol that verifies whether the
accumulated data uniquely characterize the quantum process, and a compressive
reconstruction method for the output states. We emulate multipartite scenarios
with high-order electromagnetic transverse modes and optical fibers to
positively demonstrate that, in terms of measurement resources, our
assumption-free compressive strategy can reconstruct quantum processes almost
equally efficiently using all types of input states and basis measurement
operations, operations, independent of whether or not they are factorizable
into tensor-product states.