English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A new method for the reconstitution of the anion transport system of the human erythrocyte membrane

MPS-Authors
/persons/resource/persons256083

Scheuring,  Uwe
Department of Cell Physiology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons257488

Kollewe,  Klaus
Department of Physiology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137691

Haase,  Winfried
Department of Physiology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons255902

Schubert,  Dieter
Department of Cell Physiology, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Scheuring, U., Kollewe, K., Haase, W., & Schubert, D. (1986). A new method for the reconstitution of the anion transport system of the human erythrocyte membrane. Journal of Membrane Biology, 90(2), 123-135. doi:10.1007/BF01869930.


Cite as: https://hdl.handle.net/21.11116/0000-0008-1326-8
Abstract
The anion transport protein of the human erythrocyte membrane, band 3, was solubilized and purified in solutions of the non-ionic detergent Triton X-100. It was incorporated into spherical lipid bilayers by the following procedure: Dry phosphatidylcholine was suspended in the protein solution. Octylglucopyranoside was added until the milky suspension became clear. The sample was dialyzed overnight against detergent-free buffer. Residual Triton X-100 was removed from the opalescent vesicle suspension by sucrose density gradient centrifugation and subsequent dialysis. Sulfate efflux from the vesicles was studied, under exchange conditions, using a filtration method. Three vesicle subpopulations could be distinguished by analyzing the time course of the efflux. One was nearly impermeable to sulfate, and efflux from another was due to leaks. The largest subpopulation, however, showed transport characteristics very similar to those of the anion transport system of the intact erythrocyte membrane: transport numbers (at 30 degrees C) close to 20 sulfate molecules per band 3 and min, an activation energy of approx. 140 kJ/mol, a pH maximum at pH 6.2, saturation of the sulfate flux at sulfate concentrations around 100 mM, inhibition of the flux by H2DIDS and flufenamate (approx. KI-values at 30 degrees C: 0.1 and 0.7 microM, respectively), and "right-side-out" orientation of the transport protein (as judged from the inhibition of sulfate efflux by up to 98% by externally added H2DIDS). Thus, the system represents, for the first time, a reconstitution of all the major properties of the sulfate transport across the erythrocyte membrane.