English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Spectral narrowing of x-ray pulses for precision spectroscopy with nuclear resonances

MPS-Authors
/persons/resource/persons37703

Heeg,  Kilian Peter
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;

/persons/resource/persons37846

Kaldun,  Andreas
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons37850

Ott,  Christian Reinhold
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons203065

Subramanian,  Rajagopalan
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons199491

Lentrodt,  Dominik
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;

/persons/resource/persons144567

Goerttler,  Stephan
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30659

Keitel,  Christoph H.
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;

/persons/resource/persons30892

Pfeifer,  Thomas
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30455

Evers,  Jörg
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Heeg, K. P., Kaldun, A., Strohm, C., Reiser, P., Ott, C. R., Subramanian, R., et al. (2017). Spectral narrowing of x-ray pulses for precision spectroscopy with nuclear resonances. Science, 357(6349), 375-378. doi:10.1126/science.aan3512.


Cite as: https://hdl.handle.net/21.11116/0000-0008-1412-D
Abstract
Spectroscopy of nuclear resonances offers a wide range of applications due to the remarkable energy resolution afforded by their narrow linewidths. However, progress toward higher resolution is inhibited at modern x-ray sources because they deliver only a tiny fraction of the photons on resonance, with the remainder contributing to an off-resonant background. We devised an experimental setup that uses the fast mechanical motion of a resonant target to manipulate the spectrum of a given x-ray pulse and to redistribute off-resonant spectral intensity onto the resonance. As a consequence, the resonant pulse brilliance is increased while the off-resonant background is reduced. Because our method is compatible with existing and upcoming pulsed x-ray sources, we anticipate that this approach will find applications that require ultranarrow x-ray resonances.