English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Catalytic Asymmetric Synthesis of Unprotected β2-Amino Acids

MPS-Authors
/persons/resource/persons257605

Zhu,  Chendan
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons238477

Mandrelli,  Francesca
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons249846

Zhou,  Hui
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons250587

Maji,  Rajat
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58764

List,  Benjamin
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

jacs.1c00249.pdf
(Postprint), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Zhu, C., Mandrelli, F., Zhou, H., Maji, R., & List, B. (2021). Catalytic Asymmetric Synthesis of Unprotected β2-Amino Acids. Journal of the American Chemical Society, 143(9), 3312-3317. doi:10.1021/jacs.1c00249.


Cite as: https://hdl.handle.net/21.11116/0000-0008-315F-7
Abstract
We report here a scalable, catalytic one-pot approach to enantiopure and unmodified β2-amino acids. A newly developed confined imidodiphosphorimidate (IDPi) catalyzes a broadly applicable reaction of diverse bis-silyl ketene acetals with a silylated aminomethyl ether, followed by hydrolytic workup, to give free β2-amino acids in high yields, purity, and enantioselectivity. Importantly, both aromatic and aliphatic β2-amino acids can be obtained using this method. Mechanistic studies are consistent with the aminomethylation to proceed via silylium-based asymmetric counteranion-directed catalysis (Si-ACDC) and a transition state to explain the enantioselectivity is suggested on the basis of density functional theory calculation.