English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Improved sterile neutrino constraints from the STEREO experiment with 179 days of reactor-on data

MPS-Authors
/persons/resource/persons146339

Almazan,  Helena
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons230036

Bonhomme,  A.
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30347

Buck,  C.
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30570

Haser,  Julia
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30768

Lindner,  M.
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Almazan, H., Bernard, L., Blanchet, A., Bonhomme, A., Buck, C., Sanchez, P. d. A., et al. (2020). Improved sterile neutrino constraints from the STEREO experiment with 179 days of reactor-on data. Physical Review D, 102(5): 052002. doi:10.1103/PhysRevD.102.052002.


Cite as: https://hdl.handle.net/21.11116/0000-0008-24A0-A
Abstract
The STEREO experiment is a very short baseline reactor antineutrino experiment. It is designed to test the hypothesis of light sterile neutrinos being the cause of a deficit of the observed antineutrino interaction rate at short baselines with respect to the predicted rate, known as the reactor antineutrino anomaly. The STEREO experiment measures the antineutrino energy spectrum in six identical detector cells covering baselines between 9 and 11 m from the compact core of the ILL research reactor. In this article, results from 179 days of reactor turned on and 235 days of reactor turned off are reported at a high degree of detail. The current results include improvements in the modelling of detector optical properties and the gamma-cascade after neutron captures by gadolinium, the treatment of backgrounds, and the statistical method of the oscillation analysis. Using a direct comparison between antineutrino spectra of all cells, largely independent of any flux prediction, we find the data compatible with the null oscillation hypothesis. The best-fit point of the reactor antineutrino anomaly is rejected at more than 99.9% C.L.