English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Precision single-particle localization using radial variance transform

MPS-Authors
/persons/resource/persons270611

Kashkanova,  Anna D.
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons228904

Shkarin,  Alexey
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons228914

Gholami Mahmoodabadi,  Reza
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons270613

Blessing,  Martin
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons216241

Tuna,  Yazgan
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons220998

Gemeinhardt,  André
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201175

Sandoghdar,  Vahid
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;
Sandoghdar Division, Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kashkanova, A. D., Shkarin, A., Gholami Mahmoodabadi, R., Blessing, M., Tuna, Y., Gemeinhardt, A., et al. (2021). Precision single-particle localization using radial variance transform. Optics Express, 29, 11070-11083. doi:10.1364/OE.420670.


Cite as: https://hdl.handle.net/21.11116/0000-0008-18C4-0
Abstract
We introduce an image transform designed to highlight features with high degree of radial symmetry for identification and subpixel localization of particles in microscopy images. The transform is based on analyzing pixel value variations in radial and angular directions. We compare the subpixel localization performance of this algorithm to other common methods based on radial or mirror symmetry (such as fast radial symmetry transform, orientation alignment transform, XCorr, and quadrant interpolation), using both synthetic and experimentally obtained data. We find that in all cases it achieves the same or lower localization error, frequently reaching the theoretical limit.