English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Positioning of large organelles by a membrane- associated cytoskeleton in Plasmodium sporozoites

MPS-Authors
/persons/resource/persons77778

Bohn,  Stefan
Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany;
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons77721

Baumeister,  Wolfgang
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons77876

Cyrklaff,  Marek
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kudryashev, M., Lepper, S., Stanway, R., Bohn, S., Baumeister, W., Cyrklaff, M., et al. (2010). Positioning of large organelles by a membrane- associated cytoskeleton in Plasmodium sporozoites. Cellular Microbiology, 12(3), 362-371. doi:10.1111/j.1462-5822.2009.01399.x.


Cite as: http://hdl.handle.net/21.11116/0000-0008-1CC8-8
Abstract
Cellular organelles are usually linked to the cytoskeleton, which often provides a scaffold for organelle function. In malaria parasites, no link between the cytoskeleton and the major organelles is known. Here we show that during fast, stop-and-go motion of Plasmodium sporozoites, all organelles stay largely fixed in respect to the moving parasite. Cryogenic electron tomography reveals that the nucleus, mitochondrion, apicoplast and the microtubules of Plasmodium sporozoites are linked to the parasite pellicle via long tethering proteins. These tethers originate from the inner membrane complex and are arranged in a periodic fashion following a 32 nm repeat. The tethers pass through a subpellicular structure that encompasses the entire parasite, probably as a network of membrane-associated filaments. While the spatial organization of the large parasite organelles appears dependent on their linkage to the cortex, the specialized secretory vesicles are mostly not linked to microtubules or other cellular structures that could provide support for movement.