English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONS
  This item is discarded!Release HistoryDetailsSummary

Discarded

Journal Article

Visual sensory cortices causally contribute to auditory word recognition following sensorimotor-enriched vocabulary training

MPS-Authors
/persons/resource/persons226765

Mathias,  Brian
Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, TU Dresden, Germany;
Max Planck Research Group Neural Mechanisms of Human Communication, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Sureth,  Leona
Max Planck Research Group Neural Mechanisms of Human Communication, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons185449

Hartwigsen,  Gesa
Lise Meitner Research Group Cognition and Plasticity, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19829

Macedonia,  Manuela
Max Planck Research Group Neural Mechanisms of Human Communication, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Department of Information Engineering, Johannes Kepler University, Linz, Austria;

/persons/resource/persons20071

von Kriegstein,  Katharina
Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, TU Dresden, Germany;
Max Planck Research Group Neural Mechanisms of Human Communication, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(No access)

Supplementary Material (public)
There is no public supplementary material available
Citation

Mathias, B., Sureth, L., Hartwigsen, G., Macedonia, M., Mayer, K. M., & von Kriegstein, K. (2021). Visual sensory cortices causally contribute to auditory word recognition following sensorimotor-enriched vocabulary training. Cerebral Cortex, 21(1), 513-528. doi:10.1093/cercor/bhaa240.


Abstract
Despite a rise in the use of “learning by doing” pedagogical methods in praxis, little is known as to how the brain benefits from these methods. Learning by doing strategies that utilize complementary information (“enrichment”) such as gestures have been shown to optimize learning outcomes in several domains including foreign language (L2) training. Here we tested the hypothesis that behavioral benefits of gesture-based enrichment are critically supported by integrity of the biological motion visual cortices (bmSTS). Prior functional neuroimaging work has implicated the visual motion cortices in L2 translation following sensorimotor-enriched training; the current study is the first to investigate the causal relevance of these structures in learning by doing contexts. Using neuronavigated transcranial magnetic stimulation and a gesture-enriched L2 vocabulary learning paradigm, we found that the bmSTS causally contributed to behavioral benefits of gesture-enriched learning. Visual motion cortex integrity benefitted both short- and long-term learning outcomes, as well as the learning of concrete and abstract words. These results adjudicate between opposing predictions of two neuroscientific learning theories: While reactivation-based theories predict no functional role of specialized sensory cortices in vocabulary learning outcomes, the current study supports the predictive coding theory view that these cortices precipitate sensorimotor-based learning benefits.