Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONEN
  Dieser Datensatz wurde verworfen!FreigabegeschichteDetailsÜbersicht

Verworfen

Preprint

Laminar-specific interhemispheric connectivity mapping with bilateral line-scanning fMRI

MPG-Autoren
/persons/resource/persons238112

Choi,  S
Research Group Translational Neuroimaging and Neural Control, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons214924

Chen,  Y
Research Group Translational Neuroimaging and Neural Control, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons214943

Zeng,  H
Research Group Translational Neuroimaging and Neural Control, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

(Kein Zugriff möglich)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Choi, S., Chen, Y., Zeng, H., Biswal, B., & Yu, X. (submitted). Laminar-specific interhemispheric connectivity mapping with bilateral line-scanning fMRI.


Zusammenfassung
Despite extensive studies detecting blood-oxygen-level-dependent (BOLD) fMRI signals across two hemispheres to present cognitive processes in normal and diseased brains, the role of corpus callosum (CC) to mediate interhemispheric functional connectivity remains controversial. Several studies show maintaining low-frequency fluctuation of resting-state (rs)-fMRI signals in homotopic brain areas of acallosal humans and post-callosotomy animals, raising the question: how can we specify the circuit-specific rs-fMRI signal fluctuation from other sources? To address this question, we have developed a bilateral line-scanning fMRI (BiLS) method to detect bilateral laminar BOLD fMRI signals from symmetric cortical regions with high spatial (100 μm) and temporal (100 ms) resolution in rodents under anesthesia. In addition to ultra-slow oscillation (0.01-0.02 Hz) patterns across all cortical layers, a layer-specific bilateral coherence pattern was observed with a peak at Layer (L) 2/3, where callosal projection neurons are primarily located and reciprocal transcallosal projections are received. In particular, the L2/3-specific coherence pattern showed a peak at 0.05 Hz based on the stimulation paradigm, depending on the interhemispheric CC activation. Meanwhile, the L2/3-specific rs-fMRI coherence was peaked at 0.08-0.1Hz which was independent of the varied ultra-slow oscillation patterns (0.01-0.02 Hz) presumably involved with global neuromodulation. This work provides a unique laminar fMRI mapping scheme to characterize the CC-mediated evoked fMRI and frequency-dependent rs-fMRI responses, presenting crucial evidence to distinguish the circuit-specific fMRI signal fluctuations across two hemispheres.