English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Further evidence for the existence of an intrinsic bicarbonate-stimulated Mg2+-ATPase in brush border membranes isolated from rat kidney cortex

MPS-Authors
/persons/resource/persons257981

Kinne-Saffran,  Evamaria
Department of Physiology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons257977

Kinne,  Rolf
Department of Physiology, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kinne-Saffran, E., & Kinne, R. (1979). Further evidence for the existence of an intrinsic bicarbonate-stimulated Mg2+-ATPase in brush border membranes isolated from rat kidney cortex. Journal of Membrane Biology, 49, 235-251. doi:10.1007/BF01871120.


Cite as: https://hdl.handle.net/21.11116/0000-0008-3E94-C
Abstract
The aim of this study was to provide further evidence for the existence of a nonmitochondrial bicarbonate-stimulated Mg2+-ATPase in brush border membranes derived from rat kidney cortex. A plasma membrane fraction rich in brush border microvilli and a mitochondrial fraction were isolated by differential centrifugation. Both fractions contain a Mg2+-ATPase activity which can be stimulated by bicarbonate. The two Mg2+-ATPases are stimulated likewise by chloride, bicarbonate, and sulfite or inhibited by oligomycin and aurovertin, though to different degrees. In contrast to these similarities, only the Mg2+-ATPase activity of the mitochondrial fraction is inhibited by atractyloside, a substance which blocks an adenine nucleotide translocator in the inner mitochondrial membrane. On the other hand, filipin, an antibiotic that complexes with cholesterol in the membranes inhibits exclusively the Mg2+-ATPase of the cholesterol-rich brush border membranes. Furthermore it could be demonstrated by the use of bromotetramisole, an inhibitor of alkaline phosphatase activity, that the Mg2+-ATPase activity in the membrane fraction is not due to the presence of the highly active alkaline phosphatase in these membranes. These results support the assumption that an intrinsic bicarbonate-stimulated Mg2+-ATPase is present in rat kidney brush border membranes.