Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Timing and velocity randomization similarly affect anticipatory pursuit

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Heinen, S., Badler, J., & Ting, W. (2005). Timing and velocity randomization similarly affect anticipatory pursuit. Journal of Vision, 5(6): 1, pp. 493-503. doi:10.1167/5.6.1.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-28A3-3
Zusammenfassung
Smooth pursuit eye movements are guided largely by retinal-image motion. To compensate for neural conduction delays, the brain employs a predictive mechanism to generate anticipatory pursuit that precedes target motion (E. Kowler, 1990). A critical question for interpreting neural signals recorded during pursuit concerns how this mechanism is interfaced with sensorimotor processing. It has been shown that the predictor is not simply turned-off during randomization because anticipatory eye velocity remains when target velocity is randomized (E. Kowler & S. McKee, 1987; G. W. Kao & M. J. Morrow, 1994). This study was completed to compare pursuit behavior during randomized motion-onset timing with that occurring during direction or speed randomization. We found that anticipatory eye velocity persisted despite motion-onset randomization, and that anticipation onset time was between that observed in the different constant-timing conditions. This centering strategy was similar to the bias of eye velocity magnitude away from extremes observed when direction or speed was randomized. Such a strategy is comparable to least-squares error minimization, and could be used to facilitate acquisition of a target when it begins to move. Centering was in some observers accounted for by a shift of eye velocity toward that generated in the preceding trial. The results make unlikely a model in which the predictor is disengaged by randomizing stimulus timing, and suggest that predictive signals always interact with those used in sensorimotor processing during smooth pursuit.