Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A Systematic Density Functional Study of the Zero-Field Splitting in Mn(II) Coordination Compounds

MPG-Autoren
/persons/resource/persons237755

Zein,  Samir
Lehrstuhl für Theoretische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany;
Research Department Lubitz, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society;

/persons/resource/persons237637

Lubitz,  Wolfgang
Research Department Lubitz, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zein, S., Duboc, C., Lubitz, W., & Neese, F. (2008). A Systematic Density Functional Study of the Zero-Field Splitting in Mn(II) Coordination Compounds. Inorganic Chemistry, 47(1), 134-142. doi:10.1021/ic701293n.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-33B2-5
Zusammenfassung
This work presents a detailed evaluation of the performance of density functional theory (DFT) for the prediction of zero-field splittings (ZFSs) in Mn(II) coordination complexes. Eighteen experimentally well characterized four-, five-, and six-coordinate complexes of the general formula [Mn(L)nL‘2] with L‘ = Cl, Br, I, NCS, or N3 (L = an oligodentate ligand) are considered. Several DFT-based approaches for the prediction of the ZFSs are compared. For the estimation of the spin−orbit coupling (SOC) part of the ZFS, it was found that the Pederson−Khanna (PK) approach is more successful than the previously proposed quasi-restricted orbitals (QRO)-based method. In either case, accounting for the spin−spin (SS) interaction either with or without the inclusion of the spin-polarization effects improves the results. This argues for the physical necessity of accounting for this important contribution to the ZFS. On average, the SS contribution represents ∼30% of the axial D parameters. In addition to the SS part, the SOC contributions of d−d spin flip (αβ) and ligand-to-metal charge transfer excited states (ββ) were found to dominate the SOC part of the D parameter; the observed near cancellation between the αα and βα parts is discussed in the framework of the PK model. The calculations systematically (correlation coefficient ∼0.99) overestimate the experimental D values by ∼60%. Comparison of the signs of calculated and measured D values shows that the signs of the calculated axial ZFS parameters are unreliable once E/D > 0.2. Finally, we find that the calculated D and E/D values are highly sensitive to small structural changes. It is observed that the use of theoretically optimized geometries leads to a significant deterioration of the theoretical predictions relative to the experimental geometries derived from X-ray diffraction. The standard deviation of the theoretical predictions for the D values almost doubles from ∼0.1 to ∼0.2 cm-1 upon using quantum chemically optimized structures. We do not find any noticeable improvement in considering basis sets larger than standard double- (SVP) or triple-ζ (TZVP) basis sets or using functionals other than the BP functional.