English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Electronic structure and spectroscopy of “superoxidized” iron centers in model systems: theoretical and experimental trends

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Berry, J. F., DeBeer George, S., & Neese, F. (2008). Electronic structure and spectroscopy of “superoxidized” iron centers in model systems: theoretical and experimental trends. Physical Chemistry Chemical Physics, 10(30), 4361-4374. doi:10.1039/B801803K.


Cite as: https://hdl.handle.net/21.11116/0000-0008-3396-5
Abstract
Recent advances in synthetic chemistry have led to the discovery of “superoxidized” iron centers with valencies Fe(V) and Fe(VI) [K. Meyer et al., J. Am. Chem. Soc., 1999, 121, 4859–4876; J. F. Berry et al., Science, 2006, 312, 1937–1941; F. T. de Oliveira et al., Science, 2007, 315, 835–838.]. Furthermore, in recent years a number of high-valent Fe(IV) species have been found as reaction intermediates in metalloenzymes and have also been characterized in model systems [C. Krebs et al., Acc. Chem. Res., 2007, 40, 484–492; L. Que, Jr, Acc. Chem. Res., 2007, 40, 493–500.]. These species are almost invariably stabilized by a highly basic ligand Xn− which is either O2− or N3−. The differences in structure and bonding between oxo- and nitrido species as a function of oxidation state and their consequences on the observable spectroscopic properties have never been carefully assessed. Hence, fundamental differences between high-valent iron complexes having either Fe=O or Fe=N multiple bonds have been probed computationally in this work in a series of hypothetical trans-[FeO(NH3)4OH]+/2+/3+ (1–3) and trans-[FeN(NH3)4OH]0/+/2+ (4–6) complexes. All computational properties are permeated by the intrinsically more covalent character of the Fe=N multiple bond as compared to the Fe=O bond. This difference is likely due to differences in Z* between N and O that allow for better orbital overlap to occur in the case of the Fe=N multiple bond. Spin-state energetics were addressed using elaborate multireference ab initio computations that show that all species 1–6 have an intrinsic preference for the low-spin state, except in the case of 1 in which S = 1 and S = 2 states are very close in energy. In addition to Mössbauer parameters, g-tensors, zero-field splitting and iron hyperfine couplings, X-ray absorption Fe K pre-edge spectra have been simulated using time-dependent DFT methods for the first time for a series of compounds spanning the high-valent states +4, +5, and +6 for iron. A remarkably good correlation of these simulated pre-edge features with experimental data on isolated high-valent intermediates has been found, allowing us to assign the main pre-edge features to excitations into the empty Fedz2 orbital, which is able to mix with Fe 4pz, allowing an efficient mechanism for the intensification of pre-edge features.