日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

A molecular-level strategy to boost the mass transport of perovskite electrocatalyst for enhanced oxygen evolution

MPS-Authors
/persons/resource/persons126666

Hu,  Zhiwei
Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

She, S., Zhu, Y., Tahini, H. A., Hu, Z., Weng, S.-C., Wu, X., Chen, Y., Guan, D., Song, Y., Dai, J., Smith, S. C., Wang, H., Zhou, W., & Shao, Z. (2021). A molecular-level strategy to boost the mass transport of perovskite electrocatalyst for enhanced oxygen evolution. Applied Physics Reviews, 8:, pp. 1-10. doi:10.1063/5.0033912.


引用: https://hdl.handle.net/21.11116/0000-0008-2B51-D
要旨
Perovskite oxides are of particular interest for the oxygen evolution reaction (OER) due to their high intrinsic activity. However, low surface area and nonpores in bulk phase generally limit the mass transport and thereby result in unsatisfactory mass activity. Herein, we propose a "molecular-level strategy"with the simultaneous modulation of the ordered pores on the oxygen-deficient sites along with sulfur (S) substitution on oxygen sites at the molecular level to boost the mass transport behavior of perovskite electrocatalyst for enhanced mass activity. As a proof of concept, the elaborately designed brownmillerite oxide Sr2Co1.6Fe0.4O4.8S0.2 (S-BM-SCF) shows approximately fourfold mass activity enhancement in 1 M KOH compared with the pristine SrCo0.8Fe0.2O3-δ (SCF) perovskite. Comprehensive experimental results, in combination with theoretical calculations, demonstrate that the intrinsic molecular-level pores in the brownmillerite structure can facilitate reactive hydroxyl ion (OH-) uptake into the oxygen-vacant sites and that S doping further promotes OH- adsorption by electronic structure modulation, thus accelerating mass transport rate. Meanwhile, the S-BM-SCF can significantly weaken the resistance of O2 desorption on the catalyst surface, facilitating the O2 evolution. This work deepens the understanding of how mass transport impacts the kinetics of the OER process and opens up a new avenue to design high-performance catalysts on the molecular level. © 2021 Author(s).