Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Nonequilibrium polarity-induced chemotaxis: Emergent Galilean symmetry and exact scaling exponents


Duclut,  Charlie
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Preprint), 3MB

Supplementary Material (public)
There is no public supplementary material available

Mahdisoltani, S., Zinati, R. B. A., Duclut, C., Gambassi, A., & Golestanian, R. (2021). Nonequilibrium polarity-induced chemotaxis: Emergent Galilean symmetry and exact scaling exponents. Physical Review Research, 3(1): 013100. doi:10.1103/PhysRevResearch.3.013100.

Cite as: https://hdl.handle.net/21.11116/0000-0008-395A-4
A generically observed mechanism that drives the self-organization of living systems is interaction via chemical signals among the individual elements-which may represent cells, bacteria, or even enzymes. Here we propose an unconventional mechanism for such interactions, in the context of chemotaxis, which originates from the polarity of the particles and which generalizes the well-known Keller-Segel interaction term. We study the resulting large-scale dynamical properties of a system of such chemotactic particles using the exact stochastic formulation of Dean and Kawasaki along with dynamical renormalization group analysis of the critical state of the system. At this critical point, an emergent "Galilean" symmetry is identified, which allows us to obtain the dynamical scaling exponents exactly. These exponents reveal superdiffusive density fluctuations and non-Poissonian number fluctuations. We expect our results to shed light on how molecular regulation of chemotactic circuits can determine large-scale behavior of cell colonies and tissues.