Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Dimanganese catalase—spectroscopic parameters from broken-symmetry density functional theory of the superoxidized MnIII/MnIV state

MPG-Autoren
/persons/resource/persons237725

Sinnecker,  Sebastian
Research Department Lubitz, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society;

/persons/resource/persons216825

Neese,  Frank
Research Department Wieghardt, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society;

/persons/resource/persons237637

Lubitz,  Wolfgang
Research Department Lubitz, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sinnecker, S., Neese, F., & Lubitz, W. (2005). Dimanganese catalase—spectroscopic parameters from broken-symmetry density functional theory of the superoxidized MnIII/MnIV state. Journal of Biological Inorganic Chemistry, 10(5), 231-238. doi:10.1007/s00775-005-0633-9.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-36BB-9
Zusammenfassung
Broken-symmetry density functional theory was used to study the catalytic center of manganese catalase in the superoxidized MnIII/MnIV state. Heisenberg exchange coupling constants, 55Mn and 14N hyperfine coupling constants (hfcs) and nuclear quadrupole splittings, as well as the electronic g tensors were evaluated for different model systems of the active site after complete geometry optimizations in the high-spin and broken-symmetry states. A comparison of the experimental data with the spectroscopic parameters computed for the models with unprotonated and protonated μ-oxo bridges shows best agreement between theory and experiment for a Mn2(μ-O)2(μ-OAc) core. The calculated Mn–Mn distances and 55Mn hfcs clearly support a dimanganese cluster with unprotonated μ-oxo bridges in the superoxidized state. Furthermore, it is shown that an interchange of the MnIII and MnIV oxidation states in this trapped valence system leads to specific changes in the molecular and electronic structure of the manganese clusters.