English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Universality in microdroplet nucleation during solvent exchange in Hele-Shaw-like channels

MPS-Authors
/persons/resource/persons192998

Lohse,  Detlef
Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Li, Y., Chong, K. L., Bazyar, H., Lammertink, R. G., & Lohse, D. (2021). Universality in microdroplet nucleation during solvent exchange in Hele-Shaw-like channels. Journal of Fluid Mechanics, 912: A35. doi:10.1017/jfm.2020.1137.


Cite as: https://hdl.handle.net/21.11116/0000-0008-33E8-9
Abstract
Micro- and nanodroplets have many important applications such as in drug delivery, liquid–liquid extraction, nanomaterial synthesis and cosmetics. A commonly used method to generate a large number of micro- or nanodroplets in one simple step is solvent exchange (also called nanoprecipitation), in which a good solvent of the droplet phase is displaced by a poor one, generating an oversaturation pulse that leads to droplet nucleation. Despite its crucial importance, the droplet growth resulting from the oversaturation pulse in this ternary system is still poorly understood. We experimentally and theoretically study this growth in Hele-Shaw-like channels by measuring the total volume of the oil droplets that nucleate out of it. In order to prevent the oversaturated oil from exiting the channel, we decorated some of the channels with a porous region in the middle. Solvent exchange is performed with various solution compositions, flow rates and channel geometries, and the measured droplets volume is found to increase with the Péclet number, Pe, with an approximate effective power law V∝Pe0.50. A theoretical model is developed to account for this finding. With this model we can indeed explain the V∝Pe1/2 scaling, including the prefactor, which can collapse all data of the ‘porous’ channels onto one universal curve, irrespective of channel geometry and composition of the mixtures. Our work provides a macroscopic approach to this bottom-up method of droplet generation and may guide further studies on oversaturation and nucleation in ternary systems.