English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A Quantum Chemistry View on Two Archetypical Paramagnetic Pentacoordinate Nickel(II) Complexes Offers a Fresh Look on Their NMR Spectra

MPS-Authors
/persons/resource/persons216818

Lang,  Lucas
Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ravera, E., Gigli, L., Czarniecki, B., Lang, L., Kümmerle, R., Parigi, G., et al. (2021). A Quantum Chemistry View on Two Archetypical Paramagnetic Pentacoordinate Nickel(II) Complexes Offers a Fresh Look on Their NMR Spectra. Inorganic Chemistry, 60(3), 2068-2075. doi:10.1021/acs.inorgchem.0c03635.


Cite as: https://hdl.handle.net/21.11116/0000-0008-47B5-C
Abstract
Quantum chemical methods for calculating paramagnetic NMR observables are becoming increasingly accessible and are being included in the inorganic chemistry practice. Here, we test the performance of these methods in the prediction of proton hyperfine shifts of two archetypical high-spin pentacoordinate nickel(II) complexes (NiSAL-MeDPT and NiSAL-HDPT), which, for a variety of reasons, turned out to be perfectly suited to challenge the predictions to the finest level of detail. For NiSAL-MeDPT, new NMR experiments yield an assignment that perfectly matches the calculations. The slightly different hyperfine shifts from the two “halves” of the molecules related by a pseudo-C2 axis, which are experimentally divided into two well-defined spin systems, are also straightforwardly distinguished by the calculations. In the case of NiSAL-HDPT, for which no X-ray structure is available, the quality of the calculations allowed us to refine its structure using as a starting template the structure of NiSAL-MeDPT.