Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Enhanced organic photocatalysis in confined flow through a carbon nitride nanotube membrane with conversions in the millisecond regime

MPG-Autoren
/persons/resource/persons259865

Zou,  Yajun
Aleksandr Savateev, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons222674

Xiao,  Kai
Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons221971

Qin,  Qing
Martin Oschatz, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons206227

Heil,  Tobias
Nadezda V. Tarakina, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons229440

Markushyna,  Yevheniia
Aleksandr Savateev, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons1057

Antonietti,  Markus
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons188005

Savateev,  Aleksandr
Aleksandr Savateev, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Article.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zou, Y., Xiao, K., Qin, Q., Shi, J.-W., Heil, T., Markushyna, Y., et al. (2021). Enhanced organic photocatalysis in confined flow through a carbon nitride nanotube membrane with conversions in the millisecond regime. ACS Nano, 15(4), 6551-6561. doi:10.1021/acsnano.0c09661.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-4979-F
Zusammenfassung
Bioinspired nanoconfined catalysis has developed to become an important tool for improving the performance of a wide range of chemical reactions. However, photocatalysis in a nanoconfined environment remains largely unexplored. Here, we report the application of a free-standing and flow-through carbon nitride nanotube (CNN) membrane with pore diameters of 40 nm for confined photocatalytic reactions where reactants are in contact with the catalyst for <65 ms, as calculated from the flow. Due to the well-defined tubular structure of the membrane, we are able to assess quantitatively the photocatalytic performance in each of the parallelized single carbon nitride nanotubes, which act as spatially isolated nanoreactors. In oxidation of benzylamine, the confined reaction shows an improved performance when compared to the corresponding bulk reaction, reaching a turnover frequency of (9.63 ± 1.87) × 105 s–1. Such high rates are otherwise only known for special enzymes and are clearly attributed to the confinement of the studied reactions within the one-dimensional nanochannels of the CNN membrane. Namely, a concave surface maintains the internal electric field induced by the polar surface of the carbon nitride inside the nanotube, which is essential for polarization of reagent molecules and extension of the lifetime of the photogenerated charge carriers. The enhanced flow rate upon confinement provides crucial insight on catalysis in such an environment from a physical chemistry perspective. This confinement strategy is envisioned not only to realize highly efficient reactions but also to gain a fundamental understanding of complex chemical processes.