Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Ab initio study of ultrafast charge dynamics in graphene

MPG-Autoren
/persons/resource/persons21462

Dewhurst,  John Kay
Max Planck Institute of Microstructure Physics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Li, Q. Z., Elliott, P., Dewhurst, J. K., Sharma, S., & Shallcross, S. (2021). Ab initio study of ultrafast charge dynamics in graphene. Physical Review B, 103(8): L081102. doi:10.1103/PhysRevB.103.L081102.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-4F8B-4
Zusammenfassung
Monolayer graphene provides an ideal material to explore one of the fundamental light-field driven interference effects: Landau-Zener-Stfickelberg interference. However, direct observation of the resulting interference patterns in momentum space has not proven possible, with Landau-Zener-Stuckelberg interference observed only indirectly through optically induced residual currents. Here we show that the transient electron momentum density (EMD), an object that can easily be obtained in experiment, provides an excellent description of momentum resolved charge excitation. We employ state-of-the-art time-dependent density function theory calculations, demonstrating by direct comparison of EMD with conduction band occupancy, obtained from projecting the time propagated wave function onto the ground state, that the two quantities are in excellent agreement. For even the most intense laser pulses we find the electron dynamics to be almost completely dominated by the pi band, with transitions to other bands strongly suppressed. Simple model based tight-binding approaches can thus be expected to provide an excellent description for the laser induced electron dynamics in graphene.